Neuregulin1 signaling promotes dendritic spine growth through kalirin
نویسندگان
چکیده
منابع مشابه
Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca²⁺/Calmodulin-dependent protein kinase II.
The balance between excitatory and inhibitory synapses is crucial for normal brain function. Wnt proteins stimulate synapse formation by increasing synaptic assembly. However, it is unclear whether Wnt signaling differentially regulates the formation of excitatory and inhibitory synapses. Here, we demonstrate that Wnt7a preferentially stimulates excitatory synapse formation and function. In hip...
متن کاملDendritic spine dynamics--a key role for kalirin-7.
Changes in the structure and function of dendritic spines contribute to numerous physiological processes such as synaptic transmission and plasticity, as well as behavior, including learning and memory. Moreover, altered dendritic spine morphogenesis and plasticity is an endophenotype of many neurodevelopmental and neuropsychiatric disorders. Hence, the molecular mechanisms that control spine p...
متن کاملRapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling.
The 5-HT(2A) serotonin receptor is the most abundant serotonin receptor subtype in the cortex and is predominantly expressed in pyramidal neurons. The 5-HT(2A) receptor is a target of several hallucinogens, antipsychotics, anxiolytics, and antidepressants, and it has been associated with several psychiatric disorders, conditions that are also associated with aberrations in dendritic spine morph...
متن کاملAxin Regulates Dendritic Spine Morphogenesis through Cdc42-Dependent Signaling
During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin ("axis inhibitor") is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neurochemistry
سال: 2013
ISSN: 0022-3042
DOI: 10.1111/jnc.12330